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The structure of a contact region, with application to 
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By using methods well known in boundary layer theory, the pressure across 
a contact region is shown to be approximately constant. A partial differential 
equation for the temperature is then derived. If the ideal-gas flow external to the 
contact regionis known, the temperature profile can be determined. This can then 
be used to calculate successively the velocity and a better approximation for the 
pressure of the gas in the contact region. The theory is illustrated by obtaining the 
temperature, velocity and pressure distributions for a gas in a contact region 
moving with uniform velocity. The thermal conductivity of the gas is assumed to 
vary with the temperature T like k = k , ~ ,  where n = 0, 1 or 2. The results are 
valid for any temperature ratio across the region. 

The general theory is also used to determine the motion of a plane shock which 
is reflected from a plane-conducting wall. The fluid between the reflected shock 
and the wall is at  a higher temperature than that of the wall and a contact region 
adjacent to the wall results. Expressions for the temperature, velocity and 
pressure of the fluid are derived, and it is shown that the effect of heat conduction 
is to decrease the velocity of the reflected shock by an amount which varies as 
the inverse square root of the time. 

1. Introduction 
In  ideal-gas theory, a contact region is represented by a discontinuity in the 

temperature and density but not in the pressure and gas velocity. In  this paper 
the effect of viscosity and heat conduction on the internal structure of a contact 
region is discussed. By using methods well known in boundary layer theory the 
pressure across the contact region can be shown to be approximately constant. 
This enables an approximate equation for the temperature of the gas to be derived 
and, if the ideal-gas flow external to the contact region is known, the temperature 
profile to be determined. From this the velocity and a better approximation for 
the pressure of the gas can be successively calculated. These can then be used to 
determine a higher-order approximate equation for the temperature. Hall (1954) 
has considered the case of a contact region moving with uniform speed. He 
assumed the pressure to be constant across the contact. region and checked this 
assumption by experiment, finding that very little pressure change occurs there. 
The present paper considers the general problem of an accelerating contact 
region, where the temperatures at its edges vary with time. 
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The theory is illustrated by determining the temperature, velocity and pressure 
distributions in a contact region moving with uniform velocity for gases, whose 
thermal conductivities vary with the temperature i- like k = k , P ,  where n = 0, 
1 or 2, and the kn are constants. The results are valid for any temperature ratio 
across the contact region. 

An examination of the distributions suggests that for more complicated pro- 
blems, in which the replacement of the whole contact region by a discontinuity is 
no longer a good approximation, the part of the contact region adjacent to the 
low-temperature side could be regarded as a discontinuity behind which there 
was h i t e  heat flux. Such discontinuities have been discussed by Fraser (1958) 
with reference to steady radiation fronts. He finds that two types exist, namely 
a radiation flame corresponding to a weak deflagration, and a radiation shock 
corresponding to a strong detonation. Hirschfelder, Curtiss & Bird (1954) have 
also discussed the structure of a radiation front moving into an opaque material 
in which the absorption is intense. The expression for the radiation flux uses the 
Rosseland mean free path for thermal radiation, and the expression is similar in 
form to that for the heat flux used in this paper with the ‘conductivity’ pro- 
portional to some power, n, of the temperature, where n >/ 3. Thus in the present 
paper, the solution for the case n = 2 serves as an indication to what happens in 
radiative heat transfer, For instance, it illustrates that the velocity of such a 
‘radiation front ’ relative to the fluid is small compared with the speed of sound 
and that the discontinuity is rarefactive. We can thus infer that for radiation 
in an opaque material a radiation flame will result. To find the structure of 
an unsteady radiation flame requires only a slight modification of the present 
treatment for a contact region. 

The general theory is further illustrated by determining the flow set up when 
a plane shock hits a plane-conducting wall. The reflected shock is shown to be 
attenuated by the presence of the conducting wall. 

2. General theory 
A uniform gas of infinite extent is initially at  rest. Heat is then supplied to the 

gas at a rate depending only on the distance y from some fixed plane y = 0 and 
the time t. If the gas initially in the region y < 0 is heated, then the equations 
governing the subsequent motion are 

DP au 
-+p- = 0, 
Dt ay 

together with the equation of state 
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where p ,  p, 7 and u denote the pressure, density, temperature and gas velocity, 
respectively, y and k are the coefficients of viscosity and thermal conductivity and 
are assumed to be functions of the temperature alone, yo(t) is the position at  time t 
of the particle initially at  the origin, Q(y, t )  is the rate at  which energy is generated 
per unit mass of the fluid and H(yo - y )  is the Heaviside unit function, which is 
zero for y > yo(t). 

If the viscous and heat conduction terms are neglected, then the solution of the 
problem involves a shock wave which is propagated into the non-heated gas. The 
shock wave is followed by a contact surface separating the heated gas from the 
non-heated gas. The motion and conditions at the sides of both these discon- 
tinuities can be found given the rate of generation of energy in the fluid. This 
solution will be referred to as the ‘ideal-gas ’ solution. In  reality both the shock 
and the contact surface are regions of small but finite thickness, where the 
transition from one state to another takes place rapidly and where viscosity and 
heat conduction exert a dominating influence. Our attention will be confined to 
finding the structure of the contact region, assuming that the ‘ideal-gas’ solution 
is known. 

Since a contact surface moves with the fluid, a Lagrangian frame of reference 
is convenient. Let x be the initial position of a particle, which is at position y at 
time t ,  and let p denote the initial constant density of the gas. Equation (l), which 
expresses the law of conservation of mass, can now be replaced by the integral 

expression Y 
jix = j pay. ( 5 )  

Y d t )  

Now put $ = px, which is by dehition a constant for a particular partiole, and 
choose $ and t as the new independent variables. Equations (2) and (3) transform 
into 

where u = (ay/at),. The readerwill note that theabove transformation corresponds 
to the von Mises transformation of the boundary layer equations. If p is known as 
a function of $ and t ,  equation (6) can be re-written in the form 

Y - YOV) = sn” (1lP) d$, (8) 

which, on differentiating with respect to t keeping $ constant, gives the velocity 
of a fluid particle 

where uo(t) is the velocity at  time t of the particle initially at  the origin. 

velocity. Let the actual pressure and gaa velocity in the contact region be 
Let P, w and U denote the ‘ideal-gas’ solutions for the pressure, density and 

p = P+p’, u = Ui-21’. (10) 
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Substituting in equations (9) and (6), we obtain 

@ a  1 1 

o a t p  " u' = uA(t) + j- - (- - -) a$, 

We now proceed in a manner similar to that used to obtain the boundary layer 
equations and assume that the effective thickness 6 of the contact region is small. 
Use suffices 1 and 2 to label quantities in the heated and non-heated parts of the 
gas adjacent to the contact region. Taking t as a quantity having magnitude of 
standard order, equation ( 1  1 )  shows that u' is 0{( 1 - ol/w2) 8). Further, if in the 
contact region the diffusion terms in equation (7)  are to be of the same magnitude 
as the remaining terms, then (kp ) / cp  = 0(a2), and if also (pcp ) /k  is at  most of 
order unity, it follows from equation (12 )  that ap'/a$ is 0{( 1 - wl/w,) S}. Hence, 
the total change inp' across the contact region is 0{( 1 - o l / w 2 )  S2}, so that, if terms 
of this order are negligible, the pressure in equation (7) can be replaced by its 
'ideal-gas' value, P($,t), plus an arbitrary function of the time which is 
0{( 1 - w1/w2) S}. The viscous term in equation (7) can be neglected also. The energy 
equation then becomes an equation for the temperature alone to be solved subject 
to the boundary condition at the edges of the contact region. In  order to simplify 
the analysis, terms which are 0{( 1 - w1/w2) S}  will be neglected; the pressure in 
equation (7) can then be replaced by the ' ideal-gas ' pressure evaluated at $ = 0, 
namely Po(t). Similarly, if the rate of generation of heat in the fluid is not too 
strongly dependent upon the temperature, Q($, t )  can also be replaced by &,,(t). 
If this is not the case, then the temperature dependence must be retained and the 
analysis is more complicated. We also assume that the gas is perfect with constant 
specific heats. Equation (7) then becomes 

which is an equation for the temperature and is solved subject to  the boundary 
conditions T = Tl at $ = - co, 7 = T, at k = co, where Tl and T, are the tempera- 
tures of the gas on either side of the contact discontinuity. They satisfy the 
equations 

Substituting 7 = T,O($, t )  in equation (13) ,  and using equations (14) ,  we obtain 

If k = klr, where k, is a constant, a slight change in the time variable reduces the 
equation to the well-known heat conduction equation. When k is some other 
function of the temperature numerical methods have to be employed. The two 
cases when k is a constant and when it is proportional to the square of the tem- 
perature are dealt with in 0 3. 
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Once the temperature has been found as a function of $ and t ,  the position y of 
a particle can be determined from equation (S), which can be written 

The temperature distribution in the contact region can then be plotted. 

can be expressed as 
Further, by using equations (13), (1 1) and (12), the velocity and the pressure 

where = (,uc,)/k, f ( t )  and g(t)  are arbitrary functions of the time, and Y is the 
position of a particle a t  time t given by ‘ideal-gas ’ flow theory, this particle being 
at position y when the effects of viscosity and heat conduction are considered. 
Y is related to y by the approximate equation 

$ = j - ypdy  = W1(Y-Y,)H(Yo- Y)+wz(Y-Y,)H(Y-Yo),  (1% 
% 

where o1 and w2 are the values of the density on either side of the contact dis- 
continuity where the gas is assumed to be ideal. 

The functionsf(t) and g(t)  are determined by considering the effect the contact 
region has on the external ideal-gas flow. The obvious question to ask is to what 
order of approximation can the flow inside the contact region be fitted to the gas 
flow outside without change from that described by the ‘ ideal-gas ’ solution. For 
this we require that y + Y ,  u -+ U and p -+ P at  both edges of the contact region. 
Now just outside the contact region &/a$ and ar/at are at  most O(1). Equa- 
tion (17), in which terms of O ( P )  are neglected, shows that the first two require- 
ments are satisfied if f ( t )  is identically zero. Equation (18) shows that to 0(6),  
p = P everywhere in the contact region if g(t)  is O ( P ) ,  so that the third require- 
ment can be satisfied. Hence the external gas flow is unaltered to O(S). Equa- 
tion (18) withf(t) = 0 can now be used to determine the path of any particular 
particle in the contact region. However, to determine the pressure from 
equation (18), it is necessary to know g(t) to O(S2) and this can only be found by 
considering the effect of the contact region on the gas flow external to it. In  one 
case only can g(t) be determined easily and this is for the case of a uniformly 
moving contact surface for which dPo/dt = 0 and &/at + 0 at the edges of the 
contact region. Equation (18) then shows that p can tend to Po at both edges of 
the contact region if g ( t )  = 0. The effect of the contact region on the external flow 
is then O(cY3). Once the pressure and velocity of the gas have been determined 
from equations (17) and (18), a higher order approximation for the temperature 
could be worked out. 
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3. The structure of a contact region moving with constant velocity 
In  this case the ratio of the temperatures at the edges of the region remains 

constant. The thermal conductivity of the gas is assumed to vary with the 
temperature like k = knrn, n = 0, 1 or 2. Hall (1954) has already treated the case 
n = 1 and obtained results for the case n = 0 by assuming small temperature 
changes across the contact region. The same assumption will not be made here, so 
that the results are applicable for any temperature ratio. 

(i) k = k,. 

system and making use of equation (17) .  Equation (15) becomes 
This case is best treated by transforming equation (15) back into the Eulerian 

a0 k,  ae ae -+ uo-- 
at [ cp w1 (&)J ay = & [B g - g)2] * 

(20) 

A similarity solution of the above equation depending upon the variable 
7 = a o [ y - y o ( t ) ] / , / t  is now sought. Choosing 01, = J((wlcp) /kO} ,  equation (20) 
becomes 

- 

Now divide equation (21) by dO/dy and then differentiate with respect to 7. 
Substituting 0 = #2 in the resulting equation and multipIying the equation by 
#”/#’ we obtain on integration, 

-- ”” - ,/{$h’2 - log, 4‘ + K>, 

4’ 
where K is a constant and the dash indicates differentiation with respect to 7.  
Equation (22) integrates again to give 

where 4‘ = #: when 4 = #c. Substitution of equation ( 2 2 )  into (21) yields the 
expression for the similarity variable 

(24) 

The signs are fixed by considering conditions at  infinity where q5‘ becomes zero. 
This shows that the upper signs in expressions (23) and (24) are taken for 7 < qC 
and the lower signs for 7 > qc, where qc is the value of 7 for which 

7 = T 24 .\I{#’2 - log, 4’ 4- K> + 244‘ - 44,3&. 

J(#E2 - loge 4: + .> = 0, 

thus determining K in terms of 4;. 
Now as 7 + 00, 9 -+ ,/(T2/Tl), 4‘ -+ 0; hence 

Similarly, as 7 + -00, q5 -+ 1, $‘ -+ 0, so that 
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Hence it is seen that @ = J(T,/Tl) or 7c = J(TlT2), i.e. at 7 = T~ ( 9 0 )  the tem- 
perature is the geometric mean of the temperatures at & co. 

Equation (23) can be integrated numerically given &, which corresponds to 
fixing the temperature ratio TJT,; for instance, q5: = 1/42 corresponds to 
TJT, = co. The temperature is then found as a function of q5'. Equation (24) can 
now be used to find 7 as a function of $', thus enabling the temperature distribu- 
tion to be plotted (see figures 1 and 2). 

Oi 

I I I O f  
-3  -2 -1 

- 1.0 

-09 

-08  

FIGURE 1. The temperature ratio T/T ,  as a function of the similarity variable 
u = {g-yo(t)} [ ( c p w l ) / ( k n T ~ t ) J ~  for TI. = 0, 1 and 2, and T$T, = *. 

(ii) k = k17. 
The solution of equation (15) for this case is well known and is 

where 7 = J[(cpR)/(Poklt)] $. By substituting equation (28) into equation ( l6) ,  
J [ ( ~ ~ u ~ ) / ( k ~ T ~ t ) ]  (y-yo(t)) can be determined as a function of 7. The temperature 
distribution can then be plotted (see figures 1 and 2). 

(iii) k = k , ~ ~ .  
Equation (15) becomes 

The reader will note that this equation is of the same form as that used to deter- 
mine the velocity distribution in a laminar boundary layer of incompressible 
fluid. The problem now under consideration is analogous to the laminar mixing of 
two parallel streams, the velocity in this case being identified with the tempera- 
ture in our problem. 
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We look for a similarity solution depending on the variable 7 = a2$/ Jt .  
Choosing a2 = J[(c,R)/(P,k,T,)], equation (29) becomes 

Putting 0 = dy/drj and taking 6 as the new independent variable, we obtain the 
Blasius eauation 

a37 d2T 
2-+7- = 0. 

drj3 dc2 

This has been solved numerically by Lock (1951) for the case of laminar mixing of 
two parallel streams for various ratios of the velocities. These results can be 
applied directly to obtain the temperature distribution for various values of the 
ratio T,/T2. 

FIGURE 2. The temperature distribution for T,/Tl = 0 
(with the same abscissa as in figure 1). 

Results 
Solutions have been obtained for the cases TJT, = 4 and 0. The temperature 
distributions are plotted in figures 1 and 2 for n = 0 ,1  and 2. They suggest that for 
more complicated problems, where the contact region could not be represented by 
a discontinuity, a theory could be developed in which that part of the contact 
region adjacent to the low temperature side could be replaced by a discontinuity 
behind which there was finite heat flux. The velocity of such a discontinuity 
relative to the fluid would in general be small compared to the speed of sound. The 
velocity and pressure distributions are shown in figures 3 to 6. They show that if 
the above approximate replacement was made, then the discontinuity would be 
rarefactive and would correspond to a weak deflagration. 

Figure 2 shows that when T2/Tl = 0 the temperature gradient is infinite at the 
low temperature end for n = 1 and 3. This is due to assuming zero temperature 
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there, thus introducing a singularity into equations (13), (17) and (18). In 
an actual case, where the temperature is small but finite, the profile would be 
smooth. The same singular behaviour is exhibited in the velocity and pressure 

0 1- 
uo-u 

2[(k ,T; , / (c ,  4 l *  

FIGURE 3. The perturbed velocity distribution for T,/T, = 4 (77, is the ‘ideal-gm’ velocity, 
defined in a similar way to Po).  

FIGURE 4. The perturbed velocity distribution for T,/T, = 0. 
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diagrams. The pressure distribution for T2/T, = 0 and n = 0 shows a discontinuity 
at the low temperature end. This is due to the non-vanishing of the term 
(1/7) @/at) in equation (18) as 7 -+ 7c ( =  0 in this case). This discontinuity 
would not be present if T2/T, was small but finite. 

L 
- 005 

FIGURE 5. The perturbed pressure distribution for T,/T, = +. 
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a 

FIGURE 6. The perturbed pressure distribution for T,/T, = 0. 
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4. The normal reflexion of a shock from a plane-conducting wall 
At time t = 0, a plane shock of given strength is reflected from the face, y = 0, 

of a wall occupying the region y > 0. If viscosity and heat conduction are 
neglected, the velocity of the reflected shock can be determined. Let this velocity 
be U, and let subscripts 2 and 3 indicate flow data ahead and behind the reflected 
shock respectively. The initial temperature of the wall is denoted by Tl. Near the 
face of the wall there will be a contact region in which heat conduction has an 
important effect and where we shall determine the temperature distribution. 

In  the region y > 0, the temperature satisfies the equation 

where kw is the thermal conductivity, pw is the density, and c, is the specific heat 
of the wall. 

In  the gas (in the region y < 0) adjacent to the wall, the temperature satisfies 
the equation [see equation (1 5)] 

Equations (32 )  and (33 )  are now solved subject to the boundary conditions 
+ Tl at the edge of the contact region in the wall, and 7 -+ T3 at the edge of the 

contact region in the gas. At the wall, the temperature and the flux of heat are 
continuous; thus 

To simplify the analysis we assume that k = 
then be solved and yield the solutions 

klr. Equations (32 )  and (33)  can 

(35 )  

(36)  

where K ,  = kw/(pwcw) and K~ 

we obtain 

A =  

= (k ,P3) / (c ,R) .  Applying the conditions at  y = 0, 

T3 - '1 

1 + ( l /m) '  l + m '  
B=-- T3 - Tl (37)  

where m2 = (k,T3cpo3)/(kwp,c,) .  In  the gas the Eulerian co-ordinate y is deter- 
mined by substituting expression (36 )  in equation (16 ) .  This gives 
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To find the velocity distribution in the gas, use is made of expression (17). The 
function f ( t )  is determined from the condition that the particle velocity must be 
zero at the wall; hence 

k, ar 
f(t) = - (--) 

0 '  

and therefore 

(39) 

where r is given by expression (36). Outside the contact region a7/a@ -+ 0, and the 
particle velocity there is 

To determine the pressure of the gas in the contact region, we need to know the 
function g(t)  in expression (18). This function has now to be calculated by per- 
turbing the flow external to the contact region. 

5. Solution in the external ideal-gas flow 
We assume that the effect on the external flow is small. This is true for 

t B k1/(cPw3R), which is of the order of the time when the shock is a t  a distance 
from the wall comparable to the molecular mean free path. We now write 

u = u', p = w3+p' ,  p = P3+p' ,  (42) 

and substitute in the ideal-gas flow equations. By neglecting squares and higher 
powers of the perturbed quantities we can obtain the wave-equation for u'; thus 

Linearizing the boundary condition at the edge of the contact region, i.e. 
applying the condition u = urn at the wall y = 0, we obtain 

where 

In  a similar manner we apply the boundary condition at  the unperturbed 
shock position given by y = - qt. It can be shown that here the velocity and 
pressure perturbations are related by the equation 

p' = - o J ~ A ~ @ ( M ~ ) u ' ,  
where M, = .Us/A3 and 

2Ms[(Y - 1) J!c + 21 
'(2M,) = [(3y- l)J!c+3-y]* 

Substituting expressions (43) and (44) in equation (46)) we obtain 

(46) 

(47) 
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where 6 is a variable, R = (1 + (D(Ms))/(l - a(&(,)) and h = (1 + M,)/( 1 -ills). NOW 
put 6 = A 3 t  in equation (45) and substitute for F(6)  from expression (as), the 
following equation for G is then obtained, 

- R G ( M  + G ( 0  = - K & 4 3 / 6 ) >  (50) 

which has the solution 

= (R/Jh)  - 1 JA3 r. 
Using equation (49) we obtain 

Hence 

and 

(53) 

(54) 

The function g(t)  in expression (18) can now be determined, for it equals the 
perturbed pressure a t  the edge of the contact region, namely 

which is O(6).  A higher order approximate equation for the temperature in the 
contact region could now be obtained by substituting p = P3 +- (P'),=~ in 
equation (7) with the viscous term neglected. 

From equation (53) and the perturbed shock equations we can determine how 
the shock is affected by the conducting wall. It can be shown that the perturbed 
shock speed, Ui, is given by the equation 

= Y (M,) u:, (56) 

where 

and 

(57) 

The reflected shock is thus attenuated, the perturbed speed varying inversely as 
the square root of the time. 
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